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A Scattering Variable Approach to the Volterra
Analysis of Nonlinear Systems

DONALD D. WEINER, MEMBER, IEEE, AND GERALD H. NADITCH, MEMBER, IEEE

Mstract-A new mathenmtieal model is developed which extends
Volterra series analysis of nonlinear systems with memory to bigh-
frequency systems, including those eontairdng linear distributed eom-
poneut devices. A generalized set of nonlinear scattering parameters is

defined which ean be used to deseribe power transfer and diatotiion in

nonlinear multiports, and which reduee to the classical scattering

parameters for linear networks.
The methodology is based on Volterra functional series, and is most

useful for the smail-signal ease where the response ean be approximated

by a finite number of terms of the series. Nonlinear scattering kemeis,
derived by extending the Volterra analysis, are simply related to pre-
viously developed nonlinear voltage and current Volterra kernels. For
sinusoidal inputs uonlinear scattering parameters are deflaed which are
shown to be particularly helpful when power relationships are studkd.

The principal applications are for microwave networks terminated in
real-valued 5ite reference impedances. To evaluate the average power

dissipated in a load at some intermodulation frequency, the concept of

nonlinear transducer gain is defined and shown to be proportional to the

squared magnitude of a nonlinear scattering parameter. Examples are
presented illustrating the analysis procedure for a tunnel diode reflection

amplifier and for a linear lossless transmission line terminated by a non-
linear networJc.

L INTRODUCTION

N ONLINEAR considerations often arise in the analysis

and design of microwave systems. For example,

given two out-of-band interfering signals at the input to a

microwave transistor amplifier, it maybe desirable to predict

the magnitude of an in-band intermodulation component

generated by the nonlinearities of the transistor. On the

other hand, for a linear transmission line terminated by a

square-law diode, the magnitude and phase of the second

harmonic in the wave reflected from the load may be of

interest. Alternatively, it may be important to evaluate the

nonlinear distortion in the output of a tunnel diode amplifier

employing a circulator.

In recent years the Volterra functional series [1]-[4]

has emerged as a promising tool for the analysis of such

problems. The Volterra approach assumes that the response

of a nonlinear system, having input x(t) and output y(t), can

be expressed as

(1)
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where y.(t) is the nth-order portion of the response and is

given by

The symbol $ denotes an n-fold integration from – m to—
-t- m while ~P. ~ denotes an n-fold product. yn(t)is of nth

order in the sense that multiplication of the input x(t) by

the constant A results in multiplication of y.(t) by A“.

Systems having Volterra functional representations are

referred to as “Volterra systems” [5].

In practice, the Volterra approach is most useful when

the response y(t) can be adequately approximated by a finite

number of terms. This is the situation commonly en-

countered in communications circuits such as amplifiers

and small-signal mixers where the nonlinear distortions are

usually 20 dB or more below the input. signals. In this

paper it is assumed that all respopses are adequately

represented by the finite sum .

The nth-c@er Volterra kernel h.(~l, ”.. ,Zn) is referred to in

thk paper as the nth-order impulse response, In actuality

the impulse response may not be identically zero above

order N. However, the finite sum of (3) implies that higher

order terms contribute negligibly to the output.

The nth-order nonlinear transfer function is defined to

be the n-dimensional Fourier transform of h.(~l,” “ “,Zn).

This results in the Fourier transform pair

Substitution of (5) into (3) yields the input–output relation

where X(f) is the Fourier transform of the input x(t).

Equation (3) suggests the block diagram representation

shown in Fig. 1. Equations (3) and (6) indicate that the

nonlinear system is completely characterized by either the

nonlinear impulse responses or the nonlinear transfer

functions. Once these are known, it is possible to determine
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w
Fig. 1: Ch~acterization of a nonlinear system with memory in terms

of Its N Impulse responses, hn(?l, . . . , Zn); n = 1, 2, . . . , N.
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Fig. 2. Loaded nonlinear 2-port with notation and conventions used
for port voltages, currents, and scattering variables.

the system response for arbitrary inputs expressed either II. NONLINEAR NETWORK ANALYSIS USING
in the time or frequency domain. SCATTERING VARIABLES

The special case for which the input is a sum of M

sinusoidal terms is of particular interest. Assume Consider the loaded nonlinear 2-port shown in Fig. 2.

In this paper subscripts are used to denote the order of a
M..

x(t) = ~ lEml Cos (2nfmt
~=i

Define the complex voltage

Let

f-m = -f. EO=O E-. = E.*
impulse response relating the voltage at port k (k = 1,,2)

(9) to the source voltage es(t) is denoted by h~~s)(zl,” . ~,-rH).

+ em). (7)
nonlinear term or parameter. As a result, superscripts in

parentheses are used to denote port numbers. Because the

only excitation in the system is at port 1, the response at any

point in the network depends directly on e,(t). We first

(8) develop expressions for the port voltages and currents.

Following the Volterra approach, the nth-order nonlinear

where the asterisk denotes complex conjugate. It follows Assuming terms above Nth order are negligible, the voltage

that the input can be written as response at port k is given by

x(t) = ~ ~ .~_M E~ej2nf ‘t. (lo) e(k)(t) = ~ e~(~)(t), k = 1,2 (12)
“=1

Substitution of (10) into (3) and use of (4) results in the where the nth-order portion of the response is expressed as

response

y(t)= ~ ~=~M E~H1(f~)ej2z~rn’

en(k)(t) =
f

~n(ks)(zl, . . . >~n) fi e,(t – 7P) d~P. (13)
~=~

Similarly, the nth-order nonlinear impulse response relating

the current into port k to the source voltage e;(t) is denoted
+~ : ~ ~m,~m2~2(fm,,fm2)ej2n(~ml+fm2)’ by ~n@,)(T1,. . .,Tn) ~~ fo~~ows that

22 m,=-Ivl mZ=-M

+“”” +1 : ““” ~N~_M E~l . . . E~~
~(k)(t) = f ~n(k)(~), k = 1,2 (14)

2N ~,=-M
~=1

where

“ HN(fm,, “ “ “ , fmN)d2n(fm1 + 000 ‘fmN)’ . (11)

As expected, when a sum of n tones is applied to a nonlinear

system of highest significant order N, additional frequencies

are generated consisting of all possible combinations of the

tones taken from one up to N at a time. Equation (11)

clearly demonstrates that H.(fl, ” “ “ ,f.) is the nonlinear

transfer function associated with the sinusoidal output at

frequency ~1 + ‘” o + ~.).

In previous applications of the Volterra approach inputs

and outputs have generally been characterized in terms of

voltages and currents. In microwave problems scattering
variables are the natural choice. The purpose of this paper

is to develop nonlinear scattering parameters, analogous

to the commonly used linear scattering parameters, which

can be used to describe power transfer and distortion in

nonlinear multiports.

Jjn(k)(t) = yfl(ks)(~l, “ “
“ ,Tn) fi e,(t – 7P) dzP. (15)

— *=1

Given a specific network for the nonlinear 2-port, it is a

straightforward matter to determine the impulse responses
hn(k’)(zl ,- . “ ,~~) [3]. These are assumed to be known during
the remainder of this discussion. The nonlinear transfer

functions corresponding to hn(ks)(~l, ” “ “,z.) and y.(~”) “

(T,,”””, *~ ) are denoted by IIn(ks)(fl, ” “ “, fn) and Ym(ks)“

(fi, ” “ “ JJ, respectively. Since y~ks)(~l,””” ,~n) relates a

current to a voltage, Yu(ks)(fl, 0. “, f.) is referred to as an

nth-order nonlinear admittance function.
The nonlinear admittance functions Y~@)(~l,. . . ,~~) alre

readily expressed in terms of the known nonlinear transfer

functions H$)(fl, c . . ,X) by utilizing Kirchhoff’s voltage

law at each port in conjunction with the harmonic input

method [2]. Let z,(z) be the inverse Fourier transform of
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the source impedance Z~(jco). Application of Kirchhoff’s

voltage law at port 1 results in

J
‘w

e,(t) = z.(T) i(l)(t – ~) d~ + e(l)(t)
-al

Assume the excitation consists of the sum of k? unit

amplitude complex exponential involving the noncom-

mensurable positive frequencies ~1, ””. ,~~. Thus

e,(t) = f e ‘zTf’”t. (17)
~=1

This results in

(18)

and

(19)

Substitution of (17)–(19) into (16) and recognition that

J
co

z~(~)e–j2m(f’”i+ “ “ “ ‘fm.)r d~ = ~~(fml + . . . + fm )
“

—co

(20)

yields

. [Z.(fml + “ “ “ + fm”)Ynq& “ - “ ,fm.)

+ Hn(ls)(jm,,” “ “ J&)] H ejz”f’ht. (21)
~=~

Using the linear independence of the exponential it is

possible to equate terms involving identical frequencies.

For example, equating terms involving ej2nfm’, it is necessary

to focus attention only on those terms for which n = 1,

The linear transfer functions are then related by

(22)

Similarly, for n > 1, equating terms involving ~P= ~ eJ2Zf%’

results in

n >1. (23)

In an analogous manner, application of Kir<hhoff’s voltage

law at port 2 in conjunction with the harmonic input

method gives

Ynqjml, 0. “ Al.) = - K(2s)(”L,,“ “ “ >.L”)
‘L~mi + ““”+ fmn)’

n > 1 (24)

where Z~(jw) is the load impedance. Because of the form of

apparent that the voltage source e~(t) can be considered a

short circuit as far as the higher order responses are con-

cerned. This is not surprising in view of the fact that the

frequency content of the higher order terms differs from that

of e,(t). Since es(t) is an independent voltage source with

frequencies specified in (17), the higher order currents in

i(l) do not create any voltage drops across the terminals of

the source.

Having found the port voltages and currents, it is now

possible to determine the scattering variables as a function

of the source voltage. By definition, the scattering variables

at port k (k = 1,2) are related to the corresponding port

voltage and current according to the relations [6]

/~ d’)(t) = +[dk)(t)+ ~k$k)(t)]

~; ~(k)(~)=t[e(k)(~)- ~ki(k)(t)], k = 1,2. (25)

ct(~)(t) and fl(k)(t) are the incident and reflected scattering

variables, respectively, at port k while r~ is the reference

impedance associated with port k. Although complex

reference impedances are possible [6], [7], rk in this paper

is restricted to be a positive real resistance in order to

simplify the discussion. It is not necessary that port k

be terminated in r’ in order to use rk as the reference

impedance. Equation (25) can be inverted to yield

e(k)(t)= {~ [d’)(t) + /?(k)(t)]

i(k)(t) = ~ [a(’)(t) - $(k)(t)], k = 1,2. (26)

Observe that the instantaneous power into port k can be

expressed as

p(~)(t) = e(k)(t)i(~)(t) = [ct(k)(t)]2 – [fl(k)(t)]2. (27)

As a result, we have the interpretation that [IX(k)(r)]2 is the

instantaneous power in the wave incident on port k while

[-Yk)(t)]2 is the instantaneous power in the wave reflected

from port k.

Using the Volterra approach, the rzth-order nonlinear

impulse response relating the incident scattering variable

at port k (k = 1,2) to the source voltage es(t) is denoted

by q~(~s)(~l, . “ o,Q Similarly, the nth-order nonlinear
impulse response relating the reflected scattering variable at

port k (k = 1,2) to the source voltage e,(t) is denoted by
r (’S)(ZI, . . . ,z~). Assuming terms above Nth order to be

negligible, the scattering variables at port k are given by

C@(t)= f an(k)(t)
Jj=l

where the nth-order portions of the response are expressed

as
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~n@~(t) = i-~’s)(zl,. . .,Tn) fi e,(t - 7P) d~P. (29)
~=~

The nonlinear transfer functions corresponding to q~ks) o

(71,”” “,7.) and rlks)(~l, ””” ,~.) are denoted by Q;ks) o

(fI, ”” “ ,fi) and R~ks)(fl, ”” . ,~), respectively. Q~kS)(fl, ” “ o,x)

and RE(ks)(fl, ” “ “ ,fi) are referred to as the nth-order non-

linear incidence and reflection functions, respectively.

The harmonic input method is now used to obtain ex-

pressions for the incidence and reflection functions in terms

of the known nonlinear transfer functions lf.(ks)(~l, 0. “ ,~.).

Assuming e,(t) to consist of the M unit amplitude complex

exponential given by (17), the nth-order portions of the

incident and reflected scattering variables become

an(k)(t) = ~ . . .
~ Q~ks)(f~,,.. .,f~.) ,~1 e“”f-p’

ml=l mn=l

(30)

Substitution of (12), (14), and (28) into (25) results in

k = 1,2. (31)

Making use of (18), (19), and (30) [with the superscript 1

replaced by the superscript k in (18) and (19)] and equating

terms involving ~P= ~ ejz~fmp~, it follows, for n > 1, that

+ ‘ky;ks)(fmi, ””” ,fm.)]

—
‘kyiks)(fmp”” “,fm.)]. (32)

To simplify further it is necessary to specify the super-

script k. Focusing attention on port 1, k = 1. Referring

to (22) and (23), the nonlinear incidence and reflection

functions at port 1 become

~~ Q; ’’)(f “ ,f~n)m,,” “

1

[ *I ‘*,>+~1(1’)(fm) 1 – z ( fm)

.
W:l’)(”L>’ “ “ A.)

[

“l–
rl 1Zs(fml + “ “ “ + fmn) ‘

d; R;ls)(f~,, “ - “ ,f~n)

/“

[ +-1-$&j+~1(l’)(fm) 1 + z (fm)

.
*Hn(ls)(fml, “ “ ‘,fm.)

[

“1+
rl 1Z,(fm, + “ “ “ + fro”) ‘

n=l

n>l

n=l

n >1. (33)
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A particularly interesting case arises when the source

impedance Z~(jco) is identical to the port 1 reference

impedance rl. Then

Z.(fm) = Z.(fml + “ “ “ + fmn) = r~. (34)

The expressions for the incidence and reflection functions

at port 1 simplify to

Q;ls)(f
ml?” “ “ >.fmn)

{-

1 V=l
. 2J; ‘

o, n>l

R.(ls)(fm,, “ “ “,fmn)

. I.-L [2H1(’s)(fJ - 1], n = 1
2dr1

\

&(ls)(.fml, “ “ “,fm.)

d< ‘
n>l. (35)

Taking the inverse transform of Q.(is)(~~,,” “ “,~~n), it follows

that

F
1

(5(TJ, n=l
~n(ls)(71, . . . ,z.) = 2J~

o, n>l, (36)

With reference to (28) and (29), it is seen that the incident

scattering variable is comprised solely of the first-order

portion of the response. Specifically, a.(l)(t) = O for n > 1

and

Hence, when port 1 is’ terminated in its reference impedance,

the incident scattering variable is linearly dependent on the

excitation even though the 2-port is nonlinear. In addition,
a(l)(t) is independent of the 2-port and is determined

entirely by the source voltage and reference impedance.

On the other hand, the nonlinear 2-port does reflect com-

ponents of order greater than unity. Except for n = 1,

the nonlinear reflection functions are simply the conven-

tional nonlinear transfer functions normalized by the square

root of the reference impedance.

Attention is now focused on port 2 for which k = 2.

Substitution of (24) into (32) results, for n > 1, in

JL Q;2s)(f~1,. “ “ ,fm.)

f ) [1 - zL(fm, +r:..= ~H~2$)(f~1, - -“, ~~
+ f.”) 1

J< R:’s)(fm,, “ “ “ ,fm.)

= W:zs)(fm, “ “ “ ,fmn) [1 + zL(fm, +r:. .
1+ fmn) “

As before, particularly simple results are obtained

(38)

when
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port 2 is terminated in its reference impedance rz. Then

Z~(~~, + c00 + Ymn) = r2. (39)

For this special case the nonlinear incidence and reflection

functions at port 2 reduce to

Q$2$)(f In,,” “ “>fmn) = o

&(2sifm,,
Hn<2s)(fm1,“ “ “ ,fm.1

““”,fmn) = ,– 9 n 21. (40)
4r2

The zero nonlinear incidence functions imply that qnf2sj .

(z~, ”” “,~”) = O for all n. In addition, from either (29) or

(30) it follows that et(2)(t) = O. Hence the response at port 2

consists entirely of the reflected wave @2)(t). This wave

represents the signal impressed upon the load due to the

excitation at port 1. Because the load impedance is identical

to the reference impedance, there are no reflections from the

load, As a result, no waves are incident upon port 2. For all

order n observe that the nonlinear reflection functions at

port 2 are simply the conventional nonlinear transfer

functions normalized by the square root of the reference

impedance.

III. NONLINEAR SCATTERING PARAMETERS

Just as 2-port parameters, such as Z parameters,

parameters, ABCD parameters, etc., have been used

represent linear 2-ports, parameters can also be defined

Y

to

to
characterize nonlinear 2-ports [8]. However, the charac-

terization is much more complicated. To completely

characterize a nonlinear 2-port, all possible interactions

between the independent port variables must be accounted

for. This is illustrated as follows in terms of the well-

known Z parameters [8].

Consider the nonlinear 2-port shown in Fig. 3. For

simplicity assume all voltages and currents are i~ the sin-

usoidal steady state. Denote the complex voltage and current

associated with sinusoidal waveforms at frequency f by

E(f) and l(~), respectively. Using Z parameters, the linear

portion of the 2-port is characterized ‘by

E1(’)~ = zl(’’’)(f)I,)(f)f) + Zl(’’’)(f)l,)(f)f)

E,(z)(f) = Zlqfylqf) + zl@qy)]lqf).

In (41) the subscript 1 indicates that all variables

parameters are of first order. The superscript k (k =

(41)

and

1,2)-.
on the variables indicates the port with which they are
associated, Finally, the double ~uperscript j,k (j,k ~ 1,2)

on the 2-port parameters indicates t~t the corresponding

dependent variable is at port j whale the corresponding

independent variable is at port k. Observe that, as usual,

four parameters are required to completely characterize

the linear portion of the nonlinear 2-port.

To investigate characterization of the second-order

portion of the 2-port, assume sinusoidal excitations at

frequencies~l and f2. In general, the second-order response

at each port consists of sums of sinusoids whose frequencies

are the second harmonics and the sums and differences of

=Y=P)’f
Fig. 3. Nonliiear 2-port with notation and conventions used for port

voltages and currents.

the input frequencies. Let the response at the sum frequency

(fI + ~2) be of interest. To completely characterize the

second-order portion of the nonlinear 2-port in terms of

the Z parameters, it is necessary to account for each of the

possible mechanisms by which components at (fl + f2)

may be generated in the port voltages. Accordingly, at

port k, (k = 1,2),

E$@(fi + fz) = Zp(fl + f2)12qf1 + fz)

+ z\k’2)(ff + f2)~2(2)(.fl + f2)

+ z\k’1’1)(f1,f2)Il( l)(fl)Il(1)(f2)

+ z\k’’’2)(f,,f2)11( l)(f,)I,(2)(f2)

+ z\k’2’’)(f,,f2)I,(2 )(fl)~l(1)(f2)

+ z\k’22)(f1,f2)11(2)(f1)11f2)(f2). (42)

In (42) the subscripts and superscripts have the same inter-

pretation as in (41). However, now the triple superscript

j;k,l (j,k,l = 1,2) on the 2-port parameters indicates that

the corresponding dependent variable is at port j while the

corresponding independent variable at fl is at port k and

the corresponding independent variable at f2 is at port 1.

For example, Z~ ‘2>1)(fi,f2)~l(2)(fi)Ii (1)(f2) is that portion
of the second-order voltage response at port 1 and fre~

quency (fl + f2) due to the mix of the linear portion of

the current at port 2 and frequencyfl with the linear portion

of the current at port 1 and frequency f2. Note that eight

second-order parameters are needed in addition to the four

linear parameters in order to completely characterize the

second-order behavior of the 2-port. In general, 2“+ I nth-

order parameters are needed in the characterization of the

nth-order portion of a nonlinear 2-port. Because this

number grows large even for relatively small n, representa-

tion of the behavior of nonlinear 2-ports is a difficult and

cumbersome task.

In many practical situations scattering variables can be
used to considerably simplify the characterization of non-

linear 2-ports. As before, assume the network is in the

sinusoidal steady state. Let the complex incident and

reflected scattering variables be denoted by a(f) and b(f),

respectively. Hence

(43)a.(2)(f) = la~(’)(f)l~o’’(’)(~)

implies that

u:’)(t) = Ia:qf)l Cos [2i’cjlt + f3n@)(f)]. (44)

In terms of scattering parameters, the linear portion of the
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nonlinear 2-port is characterized by

bl(l)(f-) = S1‘l’l)~)al(l)(f) -1- S1(Ma

b1(2)(f) = S1(2’l)(f)al(l)(f) + S1(2$2)(f)a1(2)(f). (45)

The parameters in (45) are the conventional scattering

parameters encountered in linear circuit theory.

Following the discussion leading to (42), if the 2-port is

excited by sinusoids at fl and f2, the second-order behavior

at port k (k = 1,2) for the sum frequency (fI -I- f2) is given

by

b2(k)(f1 + f2) = S\k”l)(fl + f2)a2(1)(f1 + f2)

+

+

+

+

+

In many microwave

S\k’2)(f1 + f2)a2(2)(f1 + f2)

S\k;1’1)(f1,f2)a1 (1)(f1)a~(1)(f2)

S\k;l’2)(f1, f2)a1(1)(f1)al( 2)(f2)

S\’;2’1)(f1,f2)a1 (2)(f1)a~(1)(f2)

Sf;2*2)(f1,f2)a1(2)(fi)a1(2)(f2). (46)

applications the source and load

impedances are pure resistances. This is the situation, for
example, when a port is loaded by a transmission line

terminated in its characteristic impedance. The reference

impedances rl and r2 can then be chosefi equal to Z~ and

Z~, respectively. This, in turn, results in a.(l)(t) = O for

n > 1 and a.(z)(t) = O for all n. Consequently,

a2(1)(f1 + f2) = a2(2)(f1 + f2) = a1(2)(f2) = al(z)(fl) = O.

(47)

With (47) substituted into (46), the second-order behavior

at the sum frequency (fl + f2) reduces to

b2qf1 + fz) = S2(l;l$l)(f1,f2)a 1(1)(f1)a1(1)(f2)

b2qf1 + fz) = S2(2;l,l)(f1,f2)ai( 1)(f1)a1(1)(f2). (48)

It follows that only two nonlinear scattering parameters are

needed to completely characterize the second-order portion

of the nonlinear 2-port when the source and load impedances

equal the reference impedances at ports 1 and 2, respectively,

Similarly, the nth-order portion of the 2-port is characterized

by

b:qfl + “ “ “ + fn)

(l;l,. ..,1)

= Sn ~ (fl>””” A) ,~1 al(l)(fp)

b:2)(f1 + ‘ “ “ + f.)

(2;1,. . $,1)

= s. T(flj””” ,fn) ,Ijl al(’)(fp). (49)

Hence, under matched conditions, the nth-order behavior

of a nonlinear 2-port can be completely characterized using

only two parameters instead of’ the 2“ + 1 parameters

mentioned earlier.

The previous discussion was based upon sinusoidal

inputs in order to simplify the presentation. Nonlinear

427

scattering functions are now derived in terms of arbitrary

inputs. In particular, it is shown how the nonlinear scat-

tering functions are related to the nonlinear incidence and

reflection functions defined previously. Throughout this

development matched conditions are assumed such that

ZS(jco) = rl ZL(JD) = r2. ([50)

Since an(l)(t) = O for n > 1,

Converting to the frequency domain, let a(l)~), al(l)(f),

Q1(l’)(f), and Es(f) be the Fourier transforms of u(’)(t),

al W~)y 91 (is)(t), and e,(t), respectively. Then

E~(f)
a(l)(f) = al(l)(f) = Q1(ls)(f)E~(f) = —

2J~ “

Because a~z)(t) = O for all n in addition to a~l)(t)

for n > 1, the reflected waves at both ports depend

on the linear portion of the incident wave at port 1

the nth-order impulse response relating the reflected waves

at port k to al(l)(t) be denoted by o~(kl)(~l, ””” ,q) It

follows that

/3@)(t) = ~ ~:’)(t) (53)
~=1

where

((52)

:= o

only

. Let

The nonlinear transfer function corresponding to ~~(’1)”

(T~, ”””, ~~ ) is denoted by Sn(kl)(fl, ” o. ,fn). In anakw with

(6), it, can be shown that j?~k)(t) can also be expressed a~s

Since Sn(kl)(fl, ”” o,A) relates a reflected wave to an incident

wave, it is referred to as an rzth-order nonlinear scattering

function.

A simple expression for the nonlinear scattering function

in terms of the complex scattering variables is obtained

by introducing the multidimensional time function

/3:f’)(fl,“ “ “ ,tn)

With reference to (54), observe that /?.(k)(tl,. ”” ,1.) =

fl~k)(~) when t, = ““. = t. = t. Define the n-dimensional
Fourier transform of flw(k)(tl, ” o“,tn)to be bn(k)(fl,. “ - ,fn).

It follows that

b~k)(fl,.. . ,fi) = SJkl)(fl, ””” ,fi) fi ai(l)(fp). (57)
~=1
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Hence the nonlinear scattering function is given by

Sn(kl)(fl , “ “ “A) = y)(f”” “ “’L) . (58)

II al(’)(fp)
~=1

For the preceding expression to be valid} recall that the

source and load impedances must equal the reference

impedances at ports 1 and 2, respectively.

An alternate expression for ~$~1)(~1,” “ “,fi) in terms of

the nonlinear incidence and reflection’ functions results by

observing that /?.(k)(t) can also be written as

p:’)(t) =
J

R.(ks)(~l,” “ ., fn) fi E,(fp)ej2m~pt dfp. (59)
— ~= 1

This results by transforming (29) such that the input is in

the frequency domain while the output is in the time domain,

as is the case with (6) and (55). By comparing (55) and (59),

it follows that

S#’)(fl,. c . ,~) fi al(l)(f,) = R~ks)(fl, ” .0 ,x) fi E,(f,)o
p=l ~=1

(60)

From (52), al(l)(f) = Ql(ls)(f )~~(f). Substitution into

(60) results in

As with

matches

Sn(klyfl , ““”,fv) =
&(ks)(f15 “ “ “ ,f.) (61)

,., Ql(ls)(f.) “

(58), this equation is valid only when impedance

exist at both ports. Equation (61) demonstrates

that the nonlinear scattering, incidence, and reflection

functions are related in a straightforward manner. In fact,

substitution of (35) and (40) into (61) yields

S“(I l)(fl, “ “ “ ,fn)

(

2H1(’’)(f1) – 1, n=l

= (Zy(r,)(”- ‘)/’Hn@)(f,, . . “ ,&), n>l

~n(21)(fl> “ - “ ,fn)

= (2)’’(rl~/2 -!& II~2s)(fl, --- ,fi),
Jr,

n >1. (62)

Hence knowledge of the conventional nonlinear transfer

functions H~k’)(fl,. ~. ,X) is adequate to determine the

nonlinear scattering functions.
The remaining task is to relate the nonlinear scattering

functions S~ki)(fl,. . . ,&) to the nonlinear scattering
(k; l,. . .,1)

parameters S. n (f,, ” “ o,fi) introduced in (49) for

sinusoidal excitation. Assume

cq(l)(t)= ~=~M ~ al(1)(f~)ej2”~f”t (63)

where

f-m = -f. al(’)(fo) = O al(l) (f_m) = (al(l)~m))*.

(64)

The incident scattering variable at port 1, therefore, con-

sists of the sum of m sinusoidal tones at frequencies

fl>” “ o,fm. Substitution of (63) into (56) yields

/j~k)(~) = L 5 “ “ “ f ‘.(kl)(fm,,” “ “,fm.)
(V m=-M ftIn=-h~

“ ~1al(l)(fmp)ej2n(~ml +””” ‘~%)’, (65)

The nth-order portion of the response is seen to consist of

an n-fold summation. By definition, al(l)(fo) = ,0. Hence,

ignoring the zero index, each summation extends over 2M

indices. Thus the n-fold summation contains (2M~ in-

dividual terms. Since the frequency associated with each

term is (~~1 + “” . + fmn), the output frequencies are those

that can be generated by adding together all possible

combinations of the input frequencies –fm,. . . . –fl,

fl, ” “ “ ,fm taken n at .a time.

The output frequencies can also be expressed in the

form (q_Mf-M + “ “ “ + q-~f-~ + q~f~ + ““” + q~f~)

where q~ is a nonnegative integer that denotes the number

of times the index m = —M,”” ., —1,l,. ..,M occurs in

the various frequency combinations. Since exactly n fre-

quencies are involved in each frequency mix, the qm obey

the constraint

q-~+;”” +q.-~+q~+”””+q~=n. (66)

The output frequencies are then those that can be generated

by all possible choices of the qm such that (66) is satisfied.

It can be shown that the nonlinear transfer functions are

symmetrical in their arguments [3], As a result, all of the

terms in (65) involving the same frequency mix are identical,

The number of different ways in which the n indices B =

(ml, “ . . ,mn) can be partitioned such that – M appears

q-~ times,”” O, – 1 appears q_ ~ times, 1 appears ql

times, ” . . . and M appears qM times is given by the multi-

nominal coefficient, denoted here by

()n n!

= (9-M!)“““(9-19(91!) “ - “ (%!)

(67)
~

where g = (q–M, -0 “ ,q– ~, ql, ””” ,qM). Combining identical

terms, (65) can be written as

/%w=if ... M
(2ym,. -M &M (:) S:k’)(fm,>” “ .,fm”)

where the underline under the multiple summation sign

serves as a reminder that only distinct terms are to be

included in the summation. From (68) the complex scat-

tering variable associated with the sinusoidal response at

(fml + “~” + fmn) is

b:kyfmi + ““”+ fmn)

()n Sn(w(fml> . . .
=&q ,fmn) ,~1 ai(l)(fmp) (69)

where bn(k)(fmi + o“. + fmn) is analogous to the complex



WEINER ANO NADITCH : VOLTERRA ANALYSIS OF NONLINEAR SYSTEMS

amplitude al(l)(~~) in (63). However, from (49),

bn(k)(fml + ““”+ fmn)

(k;l,. . .,1)

= Sn ~ (f.,>” “ “ ,~m.) ,il al(l)(.Xmp).

It follows that the nonlinear scattering functions in (55)

and the nonlinear scattering parameters in (49) are related

by
(k; l,. ..,l)

Sn T (f.,,” ‘ “J..)

1

()
n sn(~l)(fm,, . “ “ ,fm”). (70)

= (2y-’ g

Of the two quantities, S~l)(~nl,” . . ,~~n) is the more basic

because it is valid for arbitrary inputs. However,

(k; l,. . .,1)

Sn T (f.,, “ “ “Jm.)

is the quantity of interest when dealing with sinusoidal

excitations.
(2;1,. ..,1)

Sn =(fml>” “ “ ,~mn) has a simple interpretation in

terms of the forward nonlinear transducer gain of the 2-port.

Let the source voltage be given by

e,(l)(~)= ~~=~MEmej2*f’”t (71)

where

f-m = -f. EO=O E.m = Em*. (72)

The complex voltage at port 2 associated with the sinusoidal

response at frequency fml + “ “ “ + fmn = z~= -~ qPfP is
p#o

E ‘2)(f~l +n ““”+ fro”)

oIn
.—

2.-1
Q

Assuming the load

impedance at port 2,

fi (Ep)’PH;2s)(fmi,. . .,fmn). (73)
~. –M

p+o

impedance to equal the reference

the average power dissipated in r2 is

(74)

Assuming the source impedance to equal the reference

impedance at port 1, the available power from the source

at frequency fm is

The forward nonlinear transducer gain is defined to be

(75)

pn(L~(fm, + “ “ “ + fro.) . (76)
gn(T)(fml + “ “ “ + fmn) =

ii [pi%(fp)lqp
~=–M

p+o

429

This is a natural definition for the transducer gain if the

gain is to be independent of the complex voltages of the

input tones. Substitution of (74) and (75) into (76) and use

of (66) results in

9n(TYfm1 + “ “ “ + fro”)

~ 2m l~:’o(fm,, “ “= (2YZ+1
o

“,fm”)l’. (77)
q r2

Combining (70) and (62), it follows that

(2;1,. ..,1)

Isn = (f.,,” “ “>fmn)lz

~ 2(m pyn(2s)(fm1,
= (2)2 (q) ,2 “ “ “>fm”)l’

1
= — gn(~yfm, + “ “ “ + f..).(2)?- 1 (78)

Thus the forward nonlinear transducer gain is simply

related to the squared magnitude of the nonlinear scattering
(2;1,. . .,1)

parameter S. =(fmi>” “ “,fmn). Hence knowledge of

this scattering parameter is sufficient to determine the

average power dissipated in the load at some intermodulation

frequency assuming the 2-port is matched at both ports.

For n = 1, (78) reduces to

91(T)(fm) = lL(2’1)(fm)12. (79)

This is the usual interpretation of the linear scattering

parameter in terms of the linear forward transducer gain.

Thus, once again, a familiar concept from linear scattering

theory is seen to be nothing more than a special case of the

more general nonlinear problem.

IV. NONLINEAR APPLICATIONS OF

SCATTERING VARIABLES

Scattering variables are a natural choice for the analysis

of microwave systems involving nonlinearities. To demon-

strate their use, a tunnel diode amplifier employing a

circulator (Section IV-A) and a nonlinearly loaded trans-

mission line (Section IV-B) are discussed as follows.

A. Tunnel Diode Ampllfier

A tunnel diode has “the typical i–v characteristic and

nonlinear equivalent circuit shown in Fig. 4. ‘In amplifier

and/or oscillator applications the diode is usually operated

in the negative conductance region of the. i–v charac-

teristic. The tunnel diode junction is modeled by a nonlinear

conductance in parallel with a nonlinear capacitance. The

currents through these nonlinear elements are assumed to be

adequately characterized by the power series representations
[3]

iC(t) = ~~1 -$ [Cneyt)]

i~(t) = $ G#’(t).
~=1

(80)
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VI I I I
0.1 0.2 0.3 0.4 e(o)(VOLTS)

(a) (b)

i(o)(t)

:3’) 1!
k(t)=n~,* [c.en(t)]

N

ie(t)=n~l GO en (t)

(c)

Fig. 4. Tunnel diode representation. (a) Circuit symbol. (b) i-u
characteristic, (c) Equivalent circuit.

The bulk resistance of the materials and the lead inductance

are characterized by the linear elements R~ and L~, respect-

ively. In this example the tunnel diode is imbedded in a

reflection amplifier employing a circulator as shown in

Fig. 5. For the ideal circulator, assuming that the source

impedance, load impedance, and all reference impedances

are chosen equal to the real characteristic impedance of the

circulator R, the linear scattering parameters are identically

zero except for SI (1,3) ~l(z,l), and ~l(3~2J which equal

unity. Hence the scattering variables into and out of the

circulator ports are constrained by

We see that the circulator has a cyclic power transmission

capability in that the wave reflected from port 1 is the wave

incident on port 3, the wave reflected from port 2 is the wave

incident on port 1, and the wave reflected from port 3 is

the wave incident on port 2. Because the load impedance

at port 3 and the source impedance at port 1 equal the

reference impedance,

(x.(l)(t) = o, n>l. (82)

The problem is to predict second-order intermodulation

‘power levels in the load.
Note that all of the power from the source is transferred

to the tunnel diode while all of the power reflected from the

tunnel diode is transferred to the load. Consequently, it is

only necessary to evaluate the intermodulation power in

~(D)(t) as shown in Fig. 6. with reference to Figs. 5 and 6,

IJ’
TUNNEL DIODE

(a)

i(l)(t) i(s)(t)

~ m- 1

‘g

h-lw
~e(t)~

(b)

Fig. 5. Tunnel diode reflection amplifier with equivalent circuit.

$0)(+,

‘s(’)’~(”?

Fig. 6. Simplified nonlinear equivalent circuit.

From (55), the nth-order portion of ~(D)(t) is given by

where Sn(DD)(fl,. .- ,~) is the nth-order nonlinear scattering

function relating the reflected wave from the tunnel diode to

the incident wave on the diode. Making use of (62), this

scattering function is related to the conventional nonlinear

transfer fimction according to the relation

‘n(DD)(fl, “ “ “ ,fn)

(2H1@syf1) – 1, n=l
= (2~(R)@- ‘)/2~:Ds)(f1, 00. ,&), n > 1 (85)

where Hn(Ds)(fl,”. . . ,X) is the nth-order nonlinear transfer

function relating the diode voltage e(D)(t) to the source

voltage e(s)(t).

Let Zs(f) denote the series impedance of Rs and Ls and

let Zl(~) denote the parallel impedance of Cl and GI
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i[c+(t)

—

Fig. 7. Linearized equivalent circuit for the nonlinear circuit of
Fig. 6.

where Cl and G1 are the coefficients of the linear terms in

(80). The linearized equivalent circuit for the nonlinear

circuit of Fig. 6 is shown in Fig. 7. It follows that

jylqfl) = Zs(fl) + Z,(y,)
R + Zs(fl) + Zl(fl) “

(86)

Substitution of (86) into (85) results in

ZD(’jl) – RSIWJ)(fI) = zD(~l) + R (87)

92(T)(fl + f2) = %%D;D’DU1J2)12

.
y=o Y=L Y

Fig. 8. Nonlinearly loaded transmission line.

Hence, in analogy with (76) and (78), the average power

dissipated in the load R by the second-order intermodulation

component at (~i + ~2) is

‘S)(.f )&?LfJ (91)P2@)(f1 + fJ = gzq-fl + f-2)p.va 1

where

= 32R3 [tWfl + fJG + GJzl(fl + fJzl(fJzl(f2) 2
[ZD(J1 + f2) ,+ R][ZD(fl) + R][ZD(j_2) + R] “

where ZD~l) = Zs(fl) + Z1(fJ is the impedance seen

looking into the tunnel diode. S1(DD)(fJ is recognized to

be a reflection coefficient. When the tunnel diode is operated

in its negative conductance region, the magnitude of the

reflection coefficient can be greater than unity yielding a

reflected power which is greater than the incident power.

Because of the circulator, all of this power is delivered to

the load.

The second-order scattering function describes the

second-order behavior which gives rise to second harmonics

and second-order sum and difference frequencies. Applying

the analysis technique of [3], the second-order nonlinear

transfer function is found to be

~2(DsY.f19f2)

R[j2n(f1 + jJCz + GJZ1(~l + fJzl(fJzl(.f2)=—
[ZD(~l + ~,) + R][ZD(~l) + R][ZD(~2) + R]

(88)

where C2 and G2 are the coefficients of the quadratic terms

in (80). An interesting point is revealed by (88). Since Zl(f )

appears in three of the factors in the numerator as well as

in the three factors of the denominator whereas the second-

order coefficients appear only once, it is more important to

accurately characterize the linear portion of the nonlinearity

than the second-order portion even though second-order

effects are of interest. Substitution of (88) into (85) yields

(92)

If desired, the power in other intermodulation components

can be obtained in a similar manner.

B. Nonlinearly Loaded Transmission Line

Consider the nonlinearly loaded transmission line of

length L shown in Fig. 8. The line is assumed to be lossless

with real characteristic impedance 20 = @ where 1 and

c are the inductance and capacitance per unit length of the

line, respectively, The linear scattering matrix of the line

is given by

[ 1 [1
$l’l)(f ) S\l’2)(j7 = e- j2nfJZ L 0 1 . (93)

10s = spo(f ) sy’2)(f )

Hence

@’)(t) = LX(’)(t - d~ L)

~(’)(t) = ct(’)(t - ~~ L) (94)

and the transmission line acts as a pure delay. Let the

reference impedance at both ports equal 2., the charac-

teristic impedance of the line. Since the source impedance

is also 2., an(i)(t) = O for n > 1 and the incident wave at

port 1 is given by

s2[DDyf~,fz) = –
4R3/2[j2n(f, + j“,)C. -!- GJZ,(Y, + LJZ,(-f,)z,(-f,)

[zD(fl + f2) + ~][zD(fJ + KI[ZDU2) + R] “

(89)

The nonlinear scattering parameter is related to the non- Note that flJ2)(t) = u~l)(t – JZ L) = O for n > 1 and

linear scattering function, by (70), according to the relation that
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i(L)(+)

p’(t) = ~,q~) = e.(~-<z0. (96)
2JZ0

The nonlinear capacitance is characterized

series expansion

i=(t) = “~1f [Cn(e(L)(t))”].

The problem is to determine the average

by the power

(97)

power in the

secon-d harmonic of the wave reflected from the load.

By virtue of the simple relationships between the scat-

tering variables at ports 1 and 2, attention can be focused

entirely on the nonlinear equivalent circ’uit shown in Fig. 9.

With reference to Figs. 8 and 9

&)(t) = p(z)(t) p@)(t) = a(z)(t). (98)

Since a~L)(t) = j?”(2)(t) = O for n > 1, the load in Fig. 9

is driven by a source which is matched to the reference

impedance. Since average power in the second harmonic

of the wave reflected from the load is determined by the

squared magnitude of tlz(L~)(~,~), the problem reduces to

the evaluation of this parameter.

In the previous example the nonlinear scattering functions

were determined by first obtaining the conventional non-

linear transfer functions. This approach is not necessary.

In this example the nonlinear scattering functions are

obtained directly.

Application of Kirchhoff’s current law at the port in

Fig. 9 yields

i(L)(t) = ~ e(L)(t) + i.(t).

By definition, the port voltage and current are related

port scattering variables according to the equation

e(L)(t) = J~ [a(L)(t) + fl(L)(t)]

i@)(t) = & [a(L)(t) - p@)(t)].

Substitution of (100) and (97) into (99) results in

L [a(’)(t) - p(’)(t)]

Jz,

. Jz--
+ [a(L)(t) + p)(t)]

(
+ ~ ,flCi(Z~)i/2[~(L)(t) +~(L)(t)]i).

(99)

to the

(loo)

(101)

Because the source impedance equals the reference

impedance,

eg(t )&)(t) = _

2J~ “

Hence the only unknown in (101) is /3(L)(t). Rearranging

(101) such that only terms linear in /?(L)(t) are on the left-

eg(t)=e~(t -

Fig. 9. Simplified equivalent circuit.

hand side, we obtain after some simplification

[ 1
1 + * + pclz~ ~@)(t)

=
[
1–~–

1
pc~z~ C&)(t)

P ~ ci(zO)
(i+ 1)/2[a(L)(~) + ~(LJ(t)]i (102)—

i=2

where p denotes the differential operator djdt. Denote the

nth-order nonlinear scattering function relating the wave

reflected from the load to the wave incident on the load by

sn@’L)(fl, 00” ,JJ. These scattering functions can be obtained

directly by applying the harmonic input method to (102).

To determine the first-order scattering function, let

The reflected wave consists of the harmonics off and is

given by

@L)(t) = f Sn@L)(j. . . ,f)ejz~nf~. (104)
n=l

Substitution of (104) into (102), equating terms involving
~jz~f~ and cancellation of the factor ej2’Jf yields7

[

Zo
1+1

1
+ j2nfcfzo sl@) 1u) = [1 -: – j2zfc,zo .

Noting that

Y~(f) = J-- = :
z’(f)

+ j2nfCi

the first-order scattering function becomes

@O(f) = zL(f ) – Zo

zL(f ) + Z. “

‘ (1(5)

(106)

(107)

Sl(’’)(f ) i:As expected from linear scattering theory,

identical.to the reflection coefficient of the 1-port.

The excitation given by (103) can also be used to deter-

mine the second-order scattering function S2(LL)(f,f).

Substitution of (104) into (102), equating terms involving
e~2@f )~ and cancellation of the factor ej2*(2f): IWllh in

9

{1+ ‘0[i ‘j2n(2f)cJ}

= –j2z(2f)C2Z03/2[1

~2(LL7.Lf )

+ 2s,@’Q(f) + (S,qf))q.

(108)
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Solving for S,(!~)(J~) yields

S2(LL)(ff) = –j2rc(2f)C2Z03/2ZL(2j)

1 + 2s,@Lyf) + [x(LL)(”f)12 . (~oq

z~(2f) + z~

Equation (109) clearly reveals how the reflection coefficient

of the 1-port and the linearized impedance of the load

enter into determination of the second-order response.

Observe that the reflection coefficient and the linearized

load impedance are functions of frequency.

In general, the nonl@ear scattering functions S~LL) “

:::;ta;;o; of the form~) can be obtained from (102) by assuming an
. .

(110)

in conjunction with the harmonic input method.

V. CONCLUSION

Scattering variables are convenient to use when analyzing

microwave systems. This paper has demonstrated that the

conventional linear scattering parameter theory is a special

case of a more general theory applicable to nonlinear

systems. In addition, scattering variables can be used to

simplify the characterization of a nonlinear multiport when

the ports are matched to the reference impedance. The

nonlinear scattering functions facilitate the calculation of

power in nonlinear distortion products at microwave

frequencies.

REFERENCES

[1] N. Wiener, Nonlinear Problems in Ranabm Theory. Cambridge,
MA.: M.I.T. Press. 1959.

[2] E. Bedrosian and +$.O. Rlce~ “The output properties of Volterra
systems (nonlinear systems with memory) driven by harmonic and
Gaussian inputs,” Proc. IEEE, vol. 59, pp. 1688-1707, Dec. 1[971.

[3] J. Bussgang, L. Ehrman, and J. Graham, “Analysis of nonlinear
systems with multiple inputs,” Proc. IEEE, vol. 62, pp. 1088-f 119,
Aug. 1974.

[4] S: Narayanan, “Application of Volterra series to intermodulation
distortion analysis of transistor feedback amplifier,” IEEE Trans.
Circuit Theory, vol. CT-17, pp. 518-527, Nov. 1970.

[5] M. Brilliant, “Theory of the analysis of nonlinear systems,” M.I.T.
Research Lab. of Electronics, Cambridge, MA, Tech. Rep. 345,
Mar. 3, 1958.

[6] E. Kuh and R. Rohrer, Theory of Linear Active Networks. San
Francisco, CA.: Holden-Day, Inc., 1967.

[7] N. Balabanian and T. Bickart, Electrical Network Theory. New
York: John Wiley and Sons, 1969.

[8] P. Penfield, “Exact cascading for nonlinear networks,” Appendix
A of RADC Technical Report 74-68, Rome Alr Development
Center, Rome, NY, Mar. 1974.

Experimental and Theoretical Studies on
Electromagnetic Fields Induced Inside

Finite Biological Bodies
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Abstract—The total electric field inside some simulated biological
bodies induced by an electromagnetic wave has been quantified by the
recently developed tensor integral equation method and measured by an

insulated prohe. In general, the induced electric field inside a biological

body was found to be quite complicated, An excellent agreement was

obtained between theory and experiment.

1. INTRODUCTION

I
N THE STUDY of the interaction of electromagnetic

radiation with biological bodies, the key physical

quantity which determines the bioeffects on the body is

the actual electromagnetic field induced inside the body by

the incident electromagnetic wave. Since a biological body
is usually a heterogeneous finite body with an irregular
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shape, the quantification .of the internal electromagnetic

fields becomes a difficult problem. For mathematical

simplicity, commonly used models are the plane slab [1],

[2], the sphere [3]-[5], the cylinder [6], and the spheroids

[7], [8]. Although these simple models provide estimates of

the internal electromagnetic fields, the results have limited

applicability to the biological bodies with irregular shapes

and illuminated by a microwave.

Recently, Livesay and Chen [9] have developed a theoret-

ical method called the tensor integral equation method which

can be used to quantify the internal electric field induced

by an incident electromagnetic wave inside arbitrarily

shaped biological bodies. This method has been utilized

to quantify the induced electric field inside some simulated

biological bodies illuminated by a microwave. The same

induced electric field has been measured by a small insulated

probe. In general, the induced electric field inside the body

was found to be quite complicated even though the incident


