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A Scattering Variable Approach to the Volterra
Analysis of Nonlinear Systems

DONALD D. WEINER, meMBer, IEEE, AND GERALD H. NADITCH, MEMBER, IEEE

Abstract—A new mathematical model is developed which extends
Volterra series analysis of nonlinear systems with memory to high-
frequency systems, including those containing linear distributed com-
ponent devices. A generalized set of nonlinear scattering parameters is
defined which can be used to describe power transfer and distortion in
nonlinear multiports, and which reduce to the classical scattering
parameters for linear networks.

The methodology is based on Volterra functional series, and is most
useful for the small-signal case where the response can be approximated
by a finite number of terms of the series. Nonlinear scattering kernels,
derived by extending the Volterra analysis, are simply related to pre-
viously developed nonlinear voltage and current Volterra kernels. For
sinusoidal inputs nonlinear scattering parameters are defined which are
shown to be particularly helpful when power relationships are studied.
The principal applications are for microwave networks terminated in
real-valued finite reference impedances. To evaluate the average power
dissipated in a load at some intermodulation frequency, the concept of
nonlinear transducer gain is defined and shown to be proportional to the
squared magnitude of a nonlinear scattering parameter. Examples are
presented illustrating the analysis procedure for a tunnel diode reflection
amplifier and for a linear lossless transmission line terminated by a non-
linear network.

1. INTRODUCTION

ONLINEAR considerations often arise in the analysis
N and design of microwave systems. For example,
given two out-of-band interfering signals at the input to a
microwave transistor amplifier, it may be desirable to predict
the magnitude of an in-band intermodulation component
generated by the nonlinearities of the transistor. On the
other hand, for a linear transmission line terminated by a
square-law diode, the magnitude and phase of the second
harmonic in the wave reflected from the load may be of
interest. Alternatively, it may be important to evaluate the
nonlinear distortion in the output of a tunnel diode amplifier
employing a circulator.

In recent years the Volterra functional series [1]-[4]
has emerged as a promising tool for the analysis of such
problems. The Volterra approach assumes that the response
of a nonlinear system, having input x(¢) and output y(¢), can
be expressed as
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where y,(¢) is the nth-order portion of the response and is
given by

yu(t) = f hn(Tl,. 5T pI:-[1 x(t — TP) dTp' 2)

The symbol | denotes an n-fold integration from —oco to

+ oo while TT%_, denotes an s-fold product. y,(¢) is of nth
order in the sense that multiplication of the input x(¢) by
the constant A results in multiplication of y,(t) by 4"
Systems having Volterra functional representations are
referred to as “Volterra systems™ [5].

In practice, the Volterra approach is most useful when
the response y(¢) can be adequately approximated by a finite
number of terms. This is the situation commonly en-
countered in communications circuits such as amplifiers
and small-signal mixers where the nonlinear distortions are
usually 20 dB or more below the input signals. In this
paper it is assumed that all responses are adequately
represented by the finite sum

N

MO EYORRESY | EICEESPIMNC
n= A r=

The nth-grder Volterra kernel A,(z,,- - *,7,) is referred to in
this paper as the nth-order impulse response. In actuality
the impulse response may not be identically zero above
order N. However, the finite sum of (3) implies that higher
order terms contribute negligibly to the output.

The nth-order nonlinear transfer function is defined to
be the n-dimensional Fourier transform of A,(t(," - ",T,).
This results in the Fourier transform pair

He ot = [ ) T e dr, @

e o) = [ B0y T 0 df,e ()
A ‘ p=
Substitution of (5) into (3) yields the input-output relation
N n X
() = 21 an(fla' ) H1 X(fpel2™l#t df,  (6)
n=1 4 p=

where X(f) is the Fourier transform of the input x(z).
Equation (3) suggests the block diagram representation
shown in Fig. 1. Equations (3) and (6) indicate that the
nonlinear system is completely characterized by either the
nonlinear impulse responses or the nonlinear transfer
functions. Once these are known, it is possible to determine
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Fig. 1. Characterization of a nonlinear system with memory in terms
of its N impulse responses, A7y, - - -, Ty n=1,2,.- -,

the system response for arbitrary inputs expressed either
in the time or frequency domain.

The special case for which the input is a sum of M
sinusoidal terms is of particular interest. Assume

M
x(t) = Y, |E,| cos 2nf,t + 6,). @)
m=1
Define the complex voltage
E, = |E,|e" (3)
Let
f-—m = *fm E,=0 E—m = Em* (9)

where the asterisk denotes complex conjugate. It follows
that the input can be written as

M 2nf

J2nfmt
Y, E,e*
m=-M

1
x(t) = = 10
| (t) 5 (10)
Substitution of (10) into (3) and use of (4) results in the
response

1 M ;
1) == Y EH{(f,)e*

2 M

m= -

M M
4 _1_ Z Z Em1Em2H2(fm11fm2)ej2n(fm1+fm2)t

22 m=~M my=-~M

. HN(fmp' . .’me)ejzn(fml+ crrH mydt (11)

As expected, when a sum of # tones is applied to a nonlinear
system of highest significant order N, additional frequencies
are generated consisting of all possible combinations of the
tones taken from one up to N at a time. Equation (11)
clearly demonstrates that H,(f,---,f,) is the nonlinear
transfer function associated with the sinusoidal output at
frequency (f; + -+ + f).

In previous applications of the Volterra approach inputs
and outputs have generally been characterized in terms of
voltages and currents. In microwave problems scattering
variables are the natural choice. The purpose of this paper
is to develop nonlinear scattering parameters, analogous
to the commonly used linear scattering parameters, which
can be used to describe power transfer and distortion in
nonlinear multiports.
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Fig. 2. Loaded nonlinear 2-port with notation and conventions used
for port voltages, currents, and scattering variables.

II. NONLINEAR NETWORK ANALYSIS USING
SCATTERING VARIABLES

Consider the loaded nonlinear 2-port shown in Fig. 2.
In this paper subscripts are used to denote the order of a
nonlinear term or parameter. As a result, superscripts in
parentheses are used to denote port numbers. Because the
only excitation in the system is at port 1, the response at any
point in the network depends directly on eyt). We first
develop expressions for the port voltages and currents.

Following the Volterra approach, the nth-order nonlinear
impulse response relating the voltage at port k (k = 1,2)
to the source voltage ey(t) is denoted by A,%(t,---,1,).
Assuming terms above Nth order are negligible, the voltage
response at port k is given by

N
M) = Y 6P, k=12

n=1

(12)
where the nth-order portion of the response is expressed as

n
e, M (t) = fhn("s)(rl,~ ©T,) l_[1 et — 1) dt,. (13)
J p=
Similarly, the nth-order nonlinear impulse response relating
the current into port k to the source voltage e,(¢) is denoted
by .y, - +,1,). It follows that

N
i) = Y i@, k=12

n=1

(14)
where

n
W0 = [ 58%a) TLet = 1) d (13
et

Given a specific network for the nonlinear 2-port, it is a
straightforward matter to determine the impulse responses
h*(ty,- - - ,1,) [3]. These are assumed to be known during
the remainder of this discussion. The nonlinear transfer
functions corresponding to A,*)(z,,---,7,) and y,*-
(ty,*,7,) are denoted by H,*9(f,,---.f) and Y,*9.
(fi, " »f.), respectively. Since y,*(z,,---,z,) relates a
current to a voltage, Y,*(f,,---,f,) is referred to as an
nth-order nonlinear admittance function.

The nonlinear admittance functions Y,*(f,---.f,) are
readily expressed in terms of the known nonlinear transfer
functions H,*(f;,--+,f,) by utilizing Kirchhoff’s voltage
law at each port in conjunction with the harmonic input
method [2]. Let z(t) be the inverse Fourier transform of
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the source impedance Z(jw). Application of Kirchhoff’s
voltage law at port 1 results in

et) = fw z(D)iV(t — 1) dr + e")2)

N © N

¥y z(Di, 0t — ) dr + Y (1) (16)
n=1dJ .., n=1

Assume the excitation consists of the sum of M unit
amplitude complex exponentials involving the noncom-
mensurable positive frequencies f;,* -+, f3;. Thus

N i2nfmt
ety = Y edtmim

m=1

amn

This results in

M M n
en(l)(t) = Z ‘e 21 Hn(ls)(fmp ‘e .’fm") l_[l eJ?nmet
v e

m=1 my=
(18)
and
M M n .
AOESVETEID NS AL VAN | Iatcd
mi=1 mp=1 p=1

(19)

Substitution of (17)—(19) into (16) and recognition that

f z(r)e IFUmt It o = Z(fo + 0 F S

’ (20)
yields
T J2Rfmt — v L e L
Y etim=% X o X
m=1 n=1m=1 - mp=1

L2+ F ST o fon)
+ HO s fod] T €2t 1)
p=1

Using the linear independence of the exponentials it is
possible to equate terms involving identical frequencies.
For example, equating terms involving ¢/2"/, it is necessary
to focus attention only on those terms for which n = 1.
The linear transfer functions are then related by

_ (1s)
v = e,

Similarly, forn > 1, equating terms involving [T%_ , e/>"/5!
results in

Yn(IS)(fmp' : '>fm,.) =

(22)

_ H (frois" "> fon)
Zfoy + 0+ S

n>1.

(23

In an analogous manner, application of Kirchhoff’s voltage
law at port 2 in conjunction with the harmonic input
method gives

Hn(ZS)(fmly. ) 'afm,.)
Zi(foe + 0+ S)

n>1 (24)

Yn(ZS)(fmp o "fm,.) = =
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where Z;(jw) is the load impedance. Because of the form of
Y, S+ Si) A0 GO fo o fo) for > 1, it s
apparent that the voltage source e,(¢) can be considered a
short circuit as far as the higher order responses are con-
cerned. This is not surprising in view of the fact that the
frequency content of the higher order terms differs from that
of e (t). Since e(?) is an independent voltage source with
frequencies specified in (17), the higher order currents in
i do not create any voltage drops across the terminals of
the source.

Having found the port voltages and currents, it is now
possible to determine the scattering variables as a function
of the source voltage. By definition, the scattering variables
at port k (k = 1,2) are related to the corresponding port
voltage and current according to the relations [6]

Vr a®(e) = 3[eN@) + ni®@)]

Vre BO@) = 3[e®(@) — ni®@)],

a®(r) and B*(r) are the incident and reflected scattering
variables, respectively, at port k while r, is the reference
impedance associated with port k. Although complex
reference impedances are possible [6], [7], #, in this paper
is restricted to be a positive real resistance in order to
simplify the discussion. It is not necessary that port k
be terminated in #, in order to use r, as the reference
impedance. Equation (25) can be inverted to yield

e®(1) = Vr, [e®@) + O)]

k=12 (25

i®(r) = 72 [®@) — 90O, k=12 (6)

Iy

Observe that the instantaneous power into port k can be
expressed as

PP = 0% = [«P0] - [BPOF.

As a result, we have the interpretation that [a®(#)]? is the
instantaneous power in the wave incident on port & while
[B®(2)]? is the instantaneous power in the wave reflected
from port .

Using the Volterra approach, the nth-order nonlinear
impulse response relating the incident scattering variable
at port k (k = 1,2) to the source voltage e/(z) is denoted
by ¢,*(ty,"**,t,). Similarly, the nth-order nonlinear
impulse response relating the reflected scattering variable at
port k (kK = 1,2) to the source voltage e(t) is denoted by
r.®(zy,- - +,7,). Assuming terms above Nth order to be
negligible, the scattering variables at port k are given by

@n

oa®(t) = i o, (1)

n=1

0 = 3 AW, k=12 09

where the nth-order portions of the response are expressed
as

n
2®(f) = f 2.9y, ) [T et — %) d,
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W = [ ney o) TT et = ) dr,e 29)
< p=1
The nonlinear transfer functions corresponding to g,** -
(ty, - -,7,) and r,®(zy,---,7,) are denoted by Q,*9-
(f1o L) and R®(f, - - -, f,), respectively. Q,*(f1,- - -, /)
and R,*(fy, - -,f,) are referred to as the nth-order non-
linear incidence and reflection functions, respectlvely

The harmonic input method is now used to obtain ex-
pressions for the incidence and reflection functions in terms
of the known nonlinear transfer functions H,*(f;, -, £).
Assuming e(t) to consist of the M unit amplitude complex
exponentials given by (17), the nth-order portions of the
incident and reflected scattering variables become

M M n
o) = X Y 0N f o) [ It
p=1

& A
& k. - j2

C Y R o) T 2
%, L

| (30)
Substitution of (12), (14), and (28) into (25) results in

Jﬁiawm=%[§aW0+m§iwm]

n=1 n=1 n=1

ul\4E

B.t) =

ny

£§WW=SWMwiWM,
n=1 n=1

1
2 L=
k=12 (31)

Making use of (18), (19), and (30) [with the superscript 1
replaced by the superscript & in (18) and (19)] and equating
terms involving [T;., e>»', it follows, for n = 1, that

V1 0 frs fon)
— _%[Hn(ks)(fmp . ’fm,.) + 7, Yn(ks)(fm“ ‘e ’fmn)]
Vi R fo o)
= S oS = 15 oy Sod]: (B2)

To simplify further it is necessary to specify the super-
script k. Focusing attention on port 1, k& = 1. Referring
to (22) and (23), the nonlinear incidence and reflection
functions at port 1 become

V71 QO fonir o)
(1s) ry -
i U”[ smj 2z T
= QIH O fos o fon)
. [1 - "1 ] R n>1
Z o ¥+ Sn)
VI R fonis s Son)
(1s) ry _ I —=
i (ﬂ9[1+'zxﬁ»] sz !
= SEH, O fo, o fon)
; ry 3
[1+Zs(fm1+.'.+fm,.):|’ n>1. (33
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A particularly interesting case arises when the source

impedance Z(jw) is identical to the port 1 reference
impedance r;. Then
Z(fw) = Z Sy + 1+ S = 11 (34

The expressions for the incidence and reflection functions
at port 1 simplify to

QM onis™ " 5o
1
1, n=1
= {2/ ry
0, n>1
Rn(IS)(fmp’ oS

RH(G) -1, n=1

\/r1

H (19 e
n (Afm&- ’fm,.) R n > 1 (2;5)
\/7’1

Taking the inverse transform of 0, 1(fous* * * sSm,), it fOllOWs

that

— (74), n=1
qn(IS)(TI’. : "Tm) = \/

0, n> 1 (36)

With reference to (28) and (29), it is seen that the incident
scattering variable is comprised solely of the first-order
portion of the response. Specifically, «,*)(t) = O forn > 1
and

aD(t) = 2,00

eft)
2«/ ry
Hence, when port 1 is terminated in its reference impedance,
the incident scattering variable is linearly dependent on the
excitation even though the 2-port is nonlinear. In addition,
a(¢) is independent of the 2-port and is determined
entirely by the source voltage and reference impedance.
On the other hand, the nonlinear 2-port does reflect com-
ponents of order greater than unity. Except for n = 1,
the nonlinear reflection functions are simply the conven-
tional nonlinear transfer functions normalized by the square
root of the reference impedance.

Attention is. now focused on port 2 for which & = 2.
Substitution of (24) into (32) results, forn > 1, in

J"’" 4, "(r)et — 7)) dty = 37

V72 N fons® **sfon)
= (23), Ce _ ¥z
U ”)P am«+-+mj
13 R oo )
= 3H, 2 frps - s S [1 + T +’2 v )]. (38)

As before, particularly simple results are obtained when
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port 2 is terminated in its reference impedance r,. Then
Zi(Jfoy + 7+ ) = 12 (39)

For this special case the nonlinear incidence and reflection
functions at port 2 reduce to

Qn(ZS)(fmlﬁ' ‘ 'yfm,.) =0
RO fonst o fon) = H Jongs o Fone)

Jr, ’
The zero nonlinear incidence functions imply that ¢, -
(t3," ' *,1,) = O for all n. In addition, from either (29) or
(30) it follows that «®(¢r) = 0. Hence the response at port 2
consists entirely of the reflected wave B(¢). This wave
represents the signal impressed upon the load due to the
excitation at port 1. Because the load impedance is identical
to the reference impedance, there are no reflections from the

"load. As a result, no waves are incident upon port 2. For all
order n observe that the nonlinear reflection functions at
port 2 are simply the conventional nonlinear transfer
functions normalized by the square root of the reference
impedance.

n>1. (40)

ITI. NONLINEAR SCATTERING PARAMETERS

Just as 2-port parameters, such as Z parameters, Y
parameters, ABCD parameters, etc., have been used to
represent linear 2-ports, parameters can also be defined to
characterize nonlinear 2-ports [8]. However, the charac-
terization is much more complicated. To completely
characterize a nonlinear 2-port, all possible interactions
between the independent port variables must be accounted
for. This is illustrated as follows in terms of the well-
known Z parameters [8].

Consider the nonlinear 2-port shown in Fig. 3. For
simplicity assume all voltages and currents are in the sin-
usoidal steady state. Denote the complex voltage and current
associated with sinusoidal waveforms at frequency f by
E(f) and I(f), respectively. Using Z parameters, the linear
portion of the 2-port is characterized by

E,D(f) = Z{P(NLD) + Z,SPNHLP(S)
ED(f) = Z,2PNLD(S) + Z,2DNLD(S). @d1)

In (41) the subscript 1 indicates that all variables and
parameters are of first order. The superscript £ (k = 1,2)
on the variables indicates the port with which they are
associated. Finally, the double superscript j,k (j,k = 1,2)
on the 2-port parameters indicates that the corresponding
dependent variable is at port j while the corresponding
independent variable is at port k. Observe that, as usual,
four parameters are required to completely characterize
the linear portion of the nonlinear 2-port.

To investigate characterization of the second-order
portion of the 2-port, assume sinusoidal excitations at
frequencies f; and f,. In general, the second-order response
at each port consists of sums of sinusoids whose frequencies
are the second harmonics and the sums and differences of
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Fig. 3. Nonlinear 2-port with notation and conventions used for port
voltages and currents.

the input frequencies. Let the response at the sum frequency
(f1 + f5) be of interest. To completely characterize the
second-order portion of the nonlinear 2-port in terms of
the Z parameters, it is necessary to account for each of the
possible mechanisms by which components at (f; + f3)
may be generated in the port voltages. Accordingly, at
port k, (k = 1,2),

E,O(fL + f2) = ZEV(f + L + 12)
+ ZE(f; + LA + 1)
+ ZEUOfL L)
+ ZEUI(f1, L ODLAS)
+ ZE (L, L PUDLO()
+ ZERA(fL. LHLPDLE(L). (42)

In (42) the subscripts and superscripts have the same inter-
pretation as in (41). However, now the triple superscript
Jik,d (jk,l = 1,2) on the 2-port parameters indicates that
the corresponding dependent variable is at port j while the
corresponding independent variable at f; is at port k£ and
the corresponding independent variable at f, is at port L
For example, Z{:2O(f,, f); P ()1, V(f,) is that portion
of the second-order voltage response at port 1 and fre-
quency (f; + f3) due to the mix of the linear portion of
the current at port 2 and frequency f; with the linear portion
of the current at port 1 and frequency f,. Note that eight
second-order parameters are needed in addition to the four
linear parameters in order to completely characterize the
second-order behavior of the 2-port. In general, 2**! nth-
order parameters are needed in the characterization of the
nth-order portion of a nonlinear 2-port. Because this
number grows large even for relatively small », representa-
tion of the behavior of nonlinear 2-ports is a difficult and
cumbersome task.

In many practical situations scattering variables can be
used to considerably simplify the characterization of non-
linear 2-ports. As before, assume the network is in the
sinusoidal steady state. Let the complex incident and
reflected scattering variables be denoted by a(f) and b(f),
respectively. Hence

a,(f) = 1, “3)
implies that

% 2(t) = |a,2X(f)| cos [2aft + 8,(f)].

In terms of scattering parameters, the linear portion of the

(44)
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nonlinear 2-port is characterized by
B = SAONa ) + SN ()
b, 2(f) = $;*(Na, D(f) + $,22(Na,P(f).  (@45)

The parameters in (45) are the conventional scattering
parameters encountered in linear circuit theory.

Following the discussion leading to (42), if the 2-port is
excited by sinusoids at f; and f5, the second-order behavior
at port k (k = 1,2) for the sum frequency (f; + f3) is given
by

b, ®(fy + 1) = SEOf1 + [)a V(1 + 1)
+ SEA(fy + f2)aP(fy + f2)
+ SEL(f,f2)a D Da (f)
+ SIS, f)a P (f)ai P(f2)
+ SE2(f1/2)a P (fDa (f2)
+ SE2I(f1, /) P(f)asPX(f2).  (46)

In many microwave applications the source and load
impedances are pure resistances. This is the situation, for
example, when a port is loaded by a transmission line
terminated in its characteristic impedance. The reference
impedances #; and r, can then be chosen equal to Zg and
Z;, respectively. This, in turn, results in «,*)(¢) = 0 for
n > 1 and a,2(¢) = 0 for all n. Consequently,

Iy + 12) = a,P(f; + o) = /' P(f) = o, P(f) = 0.
47

With (47) substituted into (46), the second-order behavior
at the sum frequency (f; + f3) reduces to

b, V(S + f2) = SEV(fL f)a D(Da ()
b, P(fy + f2) = SEU(fLf)a (e (). (48)

It follows that only two nonlinear scattering parameters are
needed to completely characterize the second-order portion
of the nonlinear 2-port when the source and load impedances
equal the reference impedances at ports 1 and 2, respectively.
Similarly, the ath-order portion of the 2-port is characterized
by

b Sy + o+ )

(131, -+,1)

o) I a0

bA(fy + e+ 1)

(238, ++,1)
(A Ak

n G fd I a0 @)

=S,

=S,

Hence, under matched conditions, the nth-order behavior
of a nonlinear 2-port can be completely characterized using
only two parameters instead of the 2"*' parameters
mentioned earlier.

The previous discussion was based upon sinusoidal
inputs in order to simplify the presentation. Nonlinear
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scattering functions are now derived in terms of arbitrary
inputs. In particular, it is shown how the nonlinear scat-
tering functions are related to the nonlinear incidence and
reflection functions defined previously. Throughout this
development matched conditions are assumed such that

Zy(jw) = ry Z(jw) = r,. (50)
Since a,(t) = O forn > 1,
aO(t) = o, (1)
o0
= f 0 eft — 1) dey = S (sp)
- 0 2\/71

Converting to the frequency domain, let a)(f), a,'V(f),
0,99(f), and Eg(f) be the Fourier transforms of «{)(z),
a, V(2), q,49(¢), and e(¢), respectively. Then

() = () = QO NEN = B, (5
2\/ ry

Because «,(t) = 0 for all n in addition to a, () = 0
for n > 1, the reflected waves at both ports depend only
on the linear portion of the incident wave at port 1. Let
the nth-order impulse response relating the reflected waves
at port k to a,(¢) be denoted by ¢,*V(ry, - -,7,). It
follows that

o) = i Bt - (53)
n=1

where

n
[),n(k)(t) = fan(kl)(’cl,' ) ':Tn) H “1(1)(t - Tp) dTp' (54)
< p=1
The nonlinear transfer function corresponding to o,V -
(t4," - *»T,) is denoted by S,*V(fy,- - *.f,)- In analogy with
(6), it can be shown that §,*(¢) can also be expressed as

n
50w = [ 889G f) [ a0 (59
o=
Since S,*V(f,," * .f,) relates a reflected wave to an incident
wave, it is referred to as an nth-order nonlinear scattering
function.
A simple expression for the nonlinear scattering function
in terms of the complex scattering variables is obtained
by introducing the multidimensional time function

Bn(k)(tl’ T ’tn)

n
= J.Gn(kl)(fl" ) "Tn) l—.[ “1(1)(tp - Tp) dTp' ‘(56)
J p=1
With reference to (54), observe that B,%(t, "t =
B.®(#) when t, = -+- = t, = t. Define the n-dimensional
Fourier transform of B,®(t5,*",1,) to be 5,(f1, " ./
It follows that

B o f) = S (o f) I"Ilf a, (). (57)
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Hence the nonlinear scattering function is given by

(&) e
SE(fyye ey = BT sy

H a1(1)(fp)

p=1
For the preceding expression to be valid, recall that the
soutce and load impedances must equal the reference
impedances at ports 1 and 2, respectively.

An alternate expression for S,*V(f;,---,£,) in terms of

the nonlinear incidence and reflection’ functions results by
observing that 8,%)(¢) can also be written as

B = [ RN -1f) TT B df, (59

This results by transforming (29) such that the input is in
the frequency domain while the output is in the time domain,
as is the case with (6) and (55). By comparing (55) and (59),
it follows that

S, 50(f1, -+, ) ,,11 a;O(f) = RE(f 1) ﬁ1 E(f).

(60)

From (52), a;P(f) = Q,“)(f)E(f). Substitution into
(60) results in

Sn(kl)(fp' ) = Rn:ks)(fu' 5w .
1 2.

As with (58), this equation is valid only when impedance
matches exist at both ports. Equation (61) demonstrates
that the nonlinear scattering, incidence, and reflection
functions are related in a straightforward manner. In fact,
substitution of (35) and (40) into (61) yields

Sn(ll)(fls tte ,f;l)

- {2H1(“’(f1) =1, -
@) IPHN Sy ), n>

Sn(ZI)(fla U ’f;l)

= Q)" —= HOfy, - £,

ry

(61)

n>1. (62

Hence knowledge of the conventional nonlinear transfer

functions H,*)(f,,---,f,) is adequate to determine the
nonlinear scattering functions.

The remaining task is to relate the nonlinear scattering

functions S,*Y(fy,"--.f) to the nonlinear scattering

sl o01)

parameters S, n  (fy, " ,f) introduced in (49) for
sinusoidal excitation. Assume

0 Or) =

Y Lawgper (6

m==M 2

where

f—m = '_fm al(l)(f—m) = (al(l)(.fm))*'

(64

a,(fo) = 0
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The incident scattering variable at port 1, therefore, con-
sists of the sum of m sinusoidal tones at frequencies
S+ fome Substitution of (63) into (56) yields

1 M

(k) = eo ¥ (k1) coe
B0 = o B X S )

n
T @O e mt e v (65)

p=1
The nth-order portion of the response is seen to consist of
an n-fold summation. By definition, a,V(f,) = 0. Hence,
ignoring the zero index, each summation extends over 2M
indices. Thus the n-fold summation contains (2M)" in-
dividual terms. Since the frequency associated with each
term is (f,,, + -+ -+ f,), the output frequencies are those
that can be generated by adding together all possible
combinations of the input frequencies —f,, - -,—f1,
J1,° s Jm taken n at a time.

The output frequencies can also be expressed in the
form (g-pf-m + 0+ q-1f-1 + @1 fi + 0+ quSn)
where g, is a nonnegative integer that denotes the number
of times the index m = —M,---,—1,1,-+-,M occurs in
the various frequency combinations. Since exactly » fre-
quencies are involved in each frequency mix, the ¢, obey
the constraint

(66)

The output frequencies are then those that can be generated
by all possible choices of the g,, such that (66) is satisfied.

It can be shown that the nonlinear transfer functions are
symmetrical in their arguments [3]. As a result, all of the
terms in (65) involving the same frequency mix are identical.
The number of different ways in which the » indices m =
(m,,*+-,m,) can be partitioned such that —M appears
q_p times,:++, —1 appears g., times, 1 appears q,
times, - -, and M appears g,, times is given by the multi-
nomial coefficient, denoted here by

g-y + 0+ g+ g+ 0+ gy =n

n n!
(-
q g-mD) - (@-1Ng) - (guh)
where ¢ = (-3, * *,9~1, 91, ° “qy)- Combining identical
terms, (65) can be written as
) 1 M M

(2)" my=—M Mmy= —

B.(1) = (Z) S,E0 o)

' n
L a (eIt ot (68)
p=1

where the underline under the multiple summation sign
serves as a reminder that only distinct terms are to be
included in the summation. From (68) the complex scat-
tering variable associated with the sinusoidal response at

(foug + 7 F S0 i
b, fony + 00+ f)

_ (2)}‘—1 (Z) SO e fo) ,,ljl a, (f,,,) (69)

where b,%(f,,, + - + f,,) is analogous to the complex
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amplitude a,‘(f,,) in (63). However, from (49),
b oy + 0+ S

(k31,- - +,1)
R4

= Sn n (fmla' : "fm,.) l—[:l al(l)(fmp)'
p=

It follows that the nonlinear scattering functions in (55)

and the nonlinear scattering parameters in (49) are rélated

by ‘

(k;1,~+-,1)
S

Se v (Jup oS
1
(2)n 1
Of the two quantities, S *V(f,,,,* ", f,,) is the more basic
because it is valid for arbitrary inputs. However,

() ™ o) (70)

(k3l,e -+ 0,1)

Sn n (fmp' * 'afm")

is the quantity of interest when dealing w1th sinusoidal
excitations.
(2:1,+ 1)
\-—w—/
S, n (fuy' " ">fm,) has a simple interpretation in
terms of the forward nonlinear transducer gain of the 2-port.
Let the source voltage be given by

es(l)t P E e]21:fmt
0=17%

m=—~M

71
where

f—m = _fm

The complex voltage at port 2 associated with the sinusoidal
response at frequency f,,, + -+ + fo, = 2o _y 4,/ 1

E,=0 E_,=E* (12

p-'#
EX(foy + - + fr)
1 (n\ K&
= — [T E)HC Sy o) (73)
-1 (g) p;;évl

Assuming the load impedance to equal the reference
impedance at port 2, the average power dissipated in r, is

1
Pn(L)(fm1 + iy fm,,) = %lEn(Z)(fm1 + -+ .fmn)l2 ;—'

2

(74

Assuming the source impedance to equal the reference
impedance at port 1, the available power from the source
at frequency f,, is

1 |E,|?

va(fm = 8 r -

(75)

The forward nonlinear transducer gain is defined to be
P (L)(fml C At S
HM (PR )]

p==

gn(T)(fm1 + i fm,.) = (76)

g"(T)(fm1 4o
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This is a natural definition for the transducer gain if the
gain is to be independent of the complex voltages of the
input tones. Substitution of (74) and (75) into (76) and use
of (66) results in

+ )
— @y (”) C g s, e £ ()
q Ty

Combining (70) and (62), it follows that

(251, -,1)
N

S U
O g eag,,,

- )

1
- (z)n— 1

Sml?
)l

G (o + -+ S (78)
Thus the forward nonlinear transducer gain is simply
related to the squared magnitude of the nonlinear scattering
(2;1’ e ’1)

parameter S, n (fup'*sSm,) Hence knowledge of
this scattering parameter is sufficient to determine the
average power dissipated in the load at some intermodulation
frequency assuming the 2-port is matched at both ports.
For n = 1, (78) reduces to

9: P = 184D

This is the usual interpretation of the linear scattering
parameter in terms of the linear forward transducer gain.
Thus, once again, a familiar concept from linear scattering
theory is seen to be nothing more than a special case of the
more general nonlinear problem.

(79)

IV. NONLINEAR APPLICATIONS OF
SCATTERING VARIABLES

Scattering variables are a natural choice for the analysis
of microwave systems involving nonlinearitiecs. To demon-
strate their use, a tunnel diode amplifier employing a
circulator (Section IV-A) and a nonlinearly loaded trans-
mission line (Section IV-B) are discussed as follows.

A. Tunnel Diode Amplifier

A tunnel diode has "the typical i~v characteristic and
nonlinear equivalent circuit shown in Fig. 4. In amplifier
and/or oscillator applications the diode is usually operated
in the negative conductance region of the i—» charac-
teristic. The tunnel diode junction is modeled by a nonlinear
conductance in parallel with a nonlinear capacitance. The
currents through these nonlinear elements are assumed to be
adequately characterized by the power series representations
[3]

N od
it) = Z - [C e'(1)]

n=1

iol1) = 3 Ge(0) (80)
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Fig. 4. Tunnel diode representation. (a) Circuit symbol. (b) i-v
characteristic, (¢) Equivalent circuit.

The bulk resistance of the materials and the lead inductance
are characterized by the linear elements Rg and Lg, respect-
ively. In this example the tunnel diode is imbedded in a
reflection amplifier employing a circulator as shown in
Fig. 5. For the ideal circulator, assuming that the source
impedance, load impedance, and all reference impedances
are chosen equal to the real characteristic impedance of the
circulator R, the linear scattering parameters are identically
zero except for S;¥, §;%Y and 5,2 which equal
unity. Hence the scattering variables into and out of the
circulator ports are constrained by

FOM) = () B0 = a0 I = aD).

@
We see that the circulator has a cyclic power transmission
capability in that the wave reflected from port 1 is the wave
incident on port 3, the wave reflected from port 2 is the wave
incident on port 1, and the wave reflected from port 3 is
the wave incident on port 2. Because the load impedance
at port 3 and the source impedance at port 1 equal the
reference impedance,

o‘n(3)(t) = 05
0, M(t) = 0, (82)

The problem is to predict second-order intermodulation
‘power levels in the load.

Note that all of the power from the source is transferred
to the tunnel diode while all of the power reflected from the
tunnel diode is transferred to the load. Consequently, it is
only necessary to evaluate the intermodulation power in
BP(z) as shown in Fig. 6. With reference to Figs. 5 and 6,

eP(t) = () iP@) = —i®P0)  «P() = pO@)

n>1

n>1
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Fig. 5. Tunnel diode reflection amplifier with equivalent circuit.

1Pty

—

R : al®X(t) Rg Lg ielt) ig(t) —T_+
X o)1) AT e

I B(D)(n

Fig. 6. Simplified nonlinear equivalent circuit.

@) =a®(t) O = oP(t) - O = fO).

(83)
From (55), the nth-order portion of BP)(¢) is given by

B2 = [ 89710 T1 alPpe=sn af, o9

where S,PP(f,,- - -,f,) is the nth-order nonlinear scattering
function relating the reflected wave from the tunnel diode to
the incident wave on the diode. Making use of (62), this
scattering function is related to the conventional nonlinear
transfer function according to the relation

Sn(DD)(fla et 9.f;1)

_ 2H1(DS)(f1) -1, n=1
- {(Z)n(R)(n—l)/ZHn(DS)(fla' “ T n)s n > 1 (85)

where H,P9(f,,---.f,) is the nth-order nonlinear transfer
function relating the diode voltage ¢®(z) to the source
voltage e®)(z).

Let Zs(f) denote the series impedance of Rg and Lg and
let Z,(f) denote the parallel impedance of C, and G,
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i)

—

R +
alo)t)
esm* o) —=
- _ B(D)(')
Linearized equivalent circuit for the nonlinear circuit of
Fig. 6.

T,

G, G(Y)_

Fig. 7.

where C; and G, are the coefficients of the linear terms in
(80). The linearized equivalent circuit for the nonlinear
circuit of Fig. 6 is shown in Fig. 7. It follows that

Zs(f) + Z,(f)

H,® = . 86

S Rz + 2 0
Substitution of (86) into (85) results in

5,07y = 22 = R @)

Zp(f) + R

9P + ) = ASPEP(fL )1
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Fig. 8. Nonlinearly loaded transmission line.

SPPD(f,uf3) = 2 SPffs) = SO (00)

Hence, in analogy with (76) and (78), the average power
dissipated in the load R by the second-order intermodulation
component at (f; + f5) is

P, O(fy + f2) = 92 0(fy + LPRDPES) O

where

= 32R3 [j27f(f1 + £)Co + G, 1Z,(fy + [)Z:(f)Z:(f2) 2.
[Zp(f: + f2) + RI[Zp(fD) + RI[Zp(f2) + R]

where Zy(f,) = Zy(fy) + Z,(f,) is the impedance seen
looking into the tunnel diode. S;®P)(f,) is recognized to
be a reflection coefficient. When the tunnel diode is operated
in its negative conductance region, the magnitude of the
reflection coefficient can be greater than unity yielding a
reflected power which is greater than the incident power.
Because of the circulator, all of this power is delivered to
the load.

The second-order scattering function describes the
second-order behavior which gives rise to second harmonics
and second-order sum and difference frequencies. Applying
the analysis technique of [3], the second-order nonlinear
transfer function is found to be

H,"(f1.f2)

- __R[jZTf(f1 + 2)C, + G,1Z,(fi + [)Z.(f)Z:(f2)
[Zo(fys + f2) + RI[Z)(f) + RI[Zp(f2) + R]
(88)

where C, and G, are the coefficients of the quadratic terms
in (80). An interesting point is revealed by (88). Since Z,(f)
appears in three of the factors in the numerator as well as
in the three factors of the denominator whereas the second-
order coefficients appear only once, it is more important to
accurately characterize the linear portion of the nonlinearity
than the second-order portion even though second-order
effects are of interest. Substitution of (88) into (85) yields

Sz(DD)(fnfz) = -

4R3/2[j27t(f1 + f)C; + GZ]Z1(f1 + )2, (fDZ(f>) .

92)

If desired, the power in other intermodulation components
can be obtained in a similar manner.

B. Nonlinearly Loaded Transmission Line

Consider the nonlinearly loaded transmission line of
length L shown in Fig. 8. The line is assumed to be lossless
with real characteristic impedance Z, = N /¢ where I and
¢ are the inductance and capacitance per unit length of the
line, respectively. The linear scattering matrix of the line
is given by

SO SEN] v [0 1
S = [S‘f"’(f) SS“)(f)] =e “”[1 0]' ®3)

Hence
BO() = @t — \/E L)
BA(E) = a®(t — VVie L)

and the transmission line acts as a pure delay. Let the
reference impedance at both ports equal Z,, the charac-
teristic impedance of the line. Since the source impedance
is also Z,, a,()(z) = 0 for n > 1 and the incident wave at
port 1 is given by

o4

dO(r) = 0, () = 2D

L 95
N2 ©3)

(89

The nonlinear scattering parameter is related to the non-
linear scattering function, by (70}, according to the relation

[Zo(fy + f2) + RI[Zp(f) + RI[Zp(f2) + R]

Note that 8,2() = o, — JieL) =0 for n > 1 and
that
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et — \/lc L)
NG

The nonlinear capacitance is characterized by the power

series expansion

B2 = B,(t) = : (96)

N

JORS dit [C.e®()].

)

The problem is to determine the average power in the
second harmonic of the wave reflected from the load.

By virtue of the simple relationships between the scat-
tering variables at ports 1 and 2, attention can be focused
entirely on the nonlinear equivalent circuit shown in Fig. 9.
With reference to Figs. 8 and 9

aBt) = ) @) = (1), (99)

Since o, P(t) = B,®(t) = 0 for n > 1, the load in Fig. 9
is driven by a source which is matched to the reference
impedance. Since average power in the second harmonic
of the wave reflected from the load is determined by the
squared magnitude of S,'E)(f,f), the problem reduces to
the evaluation of this parameter.

In the previous example the nonlinear scattering functions
were determined by first obtaining the conventional non-
linear transfer functions. This approach is not necessary.
- In this example the nonlinear scattering functions are
obtained directly.

Application of Kirchhoff’s current law at the port in
Fig. 9 yields

Oy = I_R B + i). (99)

By definition, the port voltage and current are related to the
port scattering variables according to the equation

eB(t) = VZ, [2P(t) + pP(0)]

i) = —— [a®() - pP@]. (100)
NEA

Substitution of (100) and (97) into (99) results in

7= 0 = g0

0

- -J% [« + O]

d (X . _
+ Y {}_: CAZo) [P (t) + /g(z)(t)]‘} . (101)

Because the source impedance equals the reference
impedance,

e,(1)

N

Hence the only unknown in (101) is f%)(¢). Rearranging
(101) such that only terms linear in f(¢) are on the left-

oaB(r) =
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Fig. 9. Simplified equivalent circuit.

hand side, we obtain after some simplification

[1 + ZRB + pCIZo] BE(e)

— b Y CZo) T OR[O) + BPW] (102)
=2

where p denotes the differential operator d/dt. Denote the
nth-order nonlinear scattering function relating the wave
reflected from the load to the wave incident on the load by
S, (£, +,f.). These scattering functions can be obtained
directly by applying the harmonic input method to (102).
To determine the first-order scattering function, let
a'B(t) = ei?™, (103)
The reflected wave consists of the harmonics of £ and is
given by

pEt) = i S, (S - e, (104)

Substitution of (104) into (102), equating terms involving
e’?™* and cancellation of the factor /™" yields

[1 + % + j27rfC120] S{E(f) = [1 - % - J'27ffC1Z0] .

" (105)
Noting that
() = = L4 jonsc, (106)
Z(f) R
the first-order scattering function becomes
Sl‘(LL)( f) = Z(f) - Zy (107)
Zi(f) + Zy

As expected from linear scattering theory, S;“P(f) is
identical to the reflection coefficient of the 1-port.

The excitation given by (103) can also be used to deter-
mine the second-order scattering function S,'LD(f,f).
Substitution of (104) into (102), equating terms involving
€?*20* and cancellation of the factor ¢/2(* results in

(14 2 %+ 2m0nc]| 590

= —j27Q2)CZo> *[1 + 285,"(F) + (S, ()]
(108)
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Solving for S,ED( £, f) yields
S EP(ff) = =j2rnf)CaZo> *Z1(2f)

14 25%0) + [5,*P(N]
Z,2f) + Zo '

Equation (109) clearly reveals how the reflection coefficient
of the 1-port and the linearized impedance of the load
enter into determination of the second-order response.
Observe that the reflection coefficient and the linearized
load impedance are functions of frequency.

In general, the nonlinear scattering functions S, -
(f1,"**,f,) can be obtained from (102) by assuming an
excitation of the form

(109)

aB(t) = Y nImt (110)
m=1

in conjunction with the harmonic input method.

V. CONCLUSION

Scattering variables are convenient to use when analyzing
microwave systems. This paper has demonstrated that the
conventional linear scattering parameter theory is a special
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case of a more general theory applicable to nonlinear
systems. In addition, scattering variables can be used to
simplify the characterization of a nonlinear multiport when
the ports are matched to the reference impedance. The
nonlinear scattering functions facilitate the calculation of
power in nonlinear distortion products at microwave
frequencies.
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Electromagnetic Fields Induced Inside
Finite Biological Bodies
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Abstract—The total electric field inside some simulated biological
bodies induced by 4n electromagnetic wave has been quantified by the
recently developed tensor integral equation method and measured by an
insulated probe. In general, the induced electric field inside a biological
body was found to be quite complicated. An excellent agreement was
obtained between theory and experiment.

I. INTRODUCTION

N THE STUDY of the interaction of electromagnetic
radiation with biological bodies, the key physical
quantity which determines the bioeffects on the body is
the actual electromagnetic field induced inside the body by
the incident electromagnetic wave. Since a biological body
is usually a heterogeneous finite body with an irregular
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shape, the quantification .of the internal electromagnetic
fields becomes a difficult problem. For mathematical
simplicity, commonly used models are the plane slab [1],
[2], the sphere [3]-[5], the cylinder [6], and the spheroids
[7], [8]. Although these simple models provide estimates of
the internal electromagnetic fields, the results have limited
applicability to the biological bodies with irregular shapes
and illuminated by a microwave.

Recently, Livesay and Chen [9] have developed a theoret-
ical method called the tensor integral equation method which
can be used to quantify the internal electric field induced
by an incident electromagnetic wave inside arbitrarily
shaped biological bodies. This method has been utilized
to quantify the induced electric field inside some simulated
biological bodies illuminated by a microwave. The same
induced electric field has been measured by a small insulated
probe. In general, the induced electric field inside the body
was found to be quite complicated even though the incident



